Abstract
The use of metal-organic frameworks (MOFs) as delivery systems for biologically functional macromolecules has been explored widely in recent years due to their ability to protect their payload from a wide range of harsh conditions. Given the wide usage and diversity of potential applications, optimising the encapsulation efficiency by MOFs for different biologicals is of particular importance. Here we directly compare several protein quantitation methods and report on the accuracy, practicality, limitations, and sensitivity of these methods to assess the encapsulation efficiency of zeolitic imidazolate frameworks (ZIF)-8 MOFs for two common biologicals commonly used in nanomedicine, bovine serum albumin (BSA) and the enzyme catalase (CAT). Using these methods, ZIF-8 encapsulation of BSA and CAT was confirmed to enrich for high molecular weight and glycosylated protein forms. However, contrary to most reports, a high degree of variance was observed across all methods assessed, with fluorometric quantitation providing the most consistent results with the lowest background and greatest dynamic range. While Bicinchoninic acid (BCA) has showed greater detection range than the Bradford (Coomassie) assay, BCA and Bradford assays were found to be susceptible to background from the organic 'MOF' linker 2-methylimidazole, reducing their overall sensitivity. Finally, while very sensitive and useful for assessing protein quality SDS-PAGE is also susceptible to confounding artifacts and background. Given the increasing use of enzyme delivery using MOFs, and the diversity of potential uses in biomedicine, identifying a rapid and efficient method of assessing biomolecule encapsulation is key to their wider acceptance. This article is protected by copyright. All rights reserved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.