Abstract

Two spectrophotometric assays for protein commonly used in marine research (Coomassie stain, “Bradford”; alkaline copper, “Lowry”) and a more recent assay which has not been applied in this field (bicinchoninic acid, “Smith”) were compared for homogenates of the marine diatom Thalassiosira pseudonona using bovine serum albumin (BSA) as a standard. When homogenates were prepared by precipitating protein with trichloroacetic acid (TCA) and redissolving in 1 N NaOH, the protein content estimated by the Lowry and Smith assays agreed closely, but was consistently 20% higher than that indicated by the Bradford assay. To determine if this difference was due to the choice of a protein standard, protein from T. pseudonana was purified and compared to BSA, bovine gamma-globulin (BGG), and casein. The reactivity of the purified protein (expressed as the slope of the absorbance vs protein concentration curve) did not differ between cultures grown at high or low irradiance. For the Smith and Bradford assays the reactivity of BSA was not significantly different from algal protein, but for the Lowry assay, algal protein was significantly higher in reactivity than BSA. BGG was not significantly different in reactivity from algal protein for the Lowry and Smith assays, but BGG gave significantly lower absorbances than algal protein in the Bradford assay. These results suggest that BSA is a suitable standard for algal protein in the Bradford assays, while BGG is preferable for the Lowry assay. Either protein standard could be used for the Smith assay. Differences in purified algal protein reactivity compared to BSA could not account for the differences among the assays, nor could interference by chlorophyll a. Precipitating protein with TCA prior to analyses gave lower protein than direct analyses of homogenates for the Lowry and Smith assays, but no differences were found for the Bradford assay. As a result, the Lowry and Smith assays indicated up to 60% greater protein than the Bradford if TCA precipitation was not performed. This may be due to removal of free amino acids and small peptides which are less reactive in the Bradford assay. The 20% higher protein found in the Lowry or Smith vs Bradford assays may be due to different assay sensitivity to small peptides or other compounds which are precipitated along with proteins by TCA. Although the Smith assay is substantially simpler to perform than the Lowry, there appear to be no quantitative differences in the results. It remains unclear which spectrophotometric assay is most accurate, but the Bradford assay is faster and simpler, and is less likely to be affected by non-protein compounds found in marine phytoplankton.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call