Abstract
In this paper pixel-based and object-oriented classifications were investigated for land-cover mapping in an urban area. Since the image fusion methods are playing a useful role in supplying classification different fusion approaches such as Gram-Schmidt Transform (GS), Principal Component Transform (PC), Haar wavelet, and A Trous Wavelet Transform (ATWT) algorithms have been used and the fused image with the best quality has been assessed on its respected classification. A Hyperion image and IRS-PAN image covering a region near Tehran, Iran have been used to demonstrate the enhancement and accuracy assessment of fused image over the initial images. The evaluation results of fused images showed that the Haar wavelet approach has good quality in preserving spectral information as well as spatial information. Classification results were compared to evaluate the effectiveness of the two classification approaches. Result of the pan-sharpened image classifications displayed that the object-oriented procedure presented more accurate outcomes (90.47 %) than those obtained by pixel-based classification method (77.33 %).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.