Abstract

During the last decades, researchers have mainly focused on improving of the pixel-based classification methods and their applications. As the image resolution improved, it can't get good classification result. In order to overcome this problem, the object-oriented approaches are introduced. In this paper, two methods were compared on urban area. A part of Nanjing city in china was selected as study area; TM and IKONOS imagery were employed. Three pixel-based classification methods, the maximum likelihood, ISODATA (Iterative Self-Organizing Data Analysis Technique), minimum distance method, and an object-oriented technique, the nearest neighbor method, were used to classify image, and evaluate the result. For TM imagery, the accuracy assessment of the results showed that the object-oriented classification approach couldn't get better classification result comparing to the pixel-based classification method, the salt-pepper phenomena of the pixel-based classification result images were not obvious. For IKONOS imagery, classification results provided by the object-oriented classification method were better than the pixel-based classification approaches. So, for urban classification using TM imagery, the traditional classification method could be used to get classification information and an acceptable result could be acquired. But when the IKONOS imagery was used to investigate the urban class, the object-oriented method could find the expected result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.