Abstract

This study aimed to investigate the effects of photobiomodulation at a wavelength of 660 and 830nm at different numbers of application points in the healing of open wounds in mice. In total, 120 mice were divided into 10 groups. The animals were submitted to cutaneous lesion of the open wound type (1.5 × 1.5cm). Photobiomodulation at a wavelength of 660 and 830nm and total energy of 3.6J were used, applied at 1, 4, 5, and 9 points, for 14days. The animals were subjected to analysis of the lesion area, skin temperature, and histological analysis. Macroscopic analysis results showed a difference (p < 0.05) between the irradiated groups and the sham group at 14days PO. There was no statistical difference in skin temperature. Histological analysis findings showed better results for the epidermis thickness. Regarding the number of blood vessels, a difference was found between the 1- and 5-point 830-nm photobiomodulation groups and between the 4-point 660-nm group and the naive group. A significant difference in the number of fibroblasts was observed between the 830- and 660-nm photobiomodulation groups and the naive and sham groups. When comparing photobiomodulation wavelength, the 830-nm groups were more effective, and we emphasize the groups irradiated at 5 points, which showed an improvement in macroscopic analysis and epidermis thickness, an increase in the number of vessels, and a lower number of fibroblasts on the 14th day after skin injury.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.