Abstract

The objective of this study was to investigate the effects of organosolv and hydrotropic pretreatments on improving enzymatic hydrolysis of eucalyptus. The chemical composition of the fiber surface was analyzed using X-ray photoelectron spectroscopy (XPS) to determine the surface characteristics of pretreated eucalyptus. Other than the significant decrease of surface coverage by lignin, hydrotropic pretreatment was more effective in removing the lignin and xylose from fiber cell walls than organosolv pretreatment. The restriction of acetyl and phenolic groups in pretreated substrates was typically eliminated by hydrotropic pretreatments. Moreover, fiber structure and morphology after pretreatments were more suitable for enzymatic hydrolysis. Cellulase adsorption capacity was notably improved by hydrotropic pretreatment, which indicating the better enzyme accessibility of cellulose in pretreated substrates. Eventually, higher glucose yield was obtained with hydrotropic pretreatment. In addition, the precipitated lignin as an important by-product of pretreatments was characterized by Fourier transforms infrared spectroscopy (FTIR) also.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.