Abstract

Ultrashort echo time (UTE) imaging with soft-tissue suppression reveals short-T(2) components (typically hundreds of microseconds to milliseconds) ordinarily not captured or obscured by long-T(2) tissue signals on the order of tens of milliseconds or longer. Therefore, the technique enables visualization and quantification of short-T(2) proton signals such as those in highly collagenated connective tissues. This work compares the performance of the three most commonly used long-T(2) suppression UTE sequences, i.e., echo subtraction (dual-echo UTE), saturation via dual-band saturation pulses (dual-band UTE), and inversion by adiabatic inversion pulses (IR-UTE) at 3 T, via Bloch simulations and experimentally in vivo in the lower extremities of test subjects. For unbiased performance comparison, the acquisition parameters are optimized individually for each sequence to maximize short-T(2) signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR) between short- and long-T(2) components. Results show excellent short-T(2) contrast which is achieved with these optimized sequences. A combination of dual-band UTE with dual-echo UTE provides good short-T(2) SNR and CNR with less sensitivity to B(1) homogeneity. IR-UTE has the lowest short-T(2) SNR efficiency but provides highly uniform short-T(2) contrast and is well suited for imaging short-T(2) species with relatively short T(1) such as bone water.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call