Abstract

Aim. To compare semikinetic perimetry (SKP) on Octopus 900 perimetry to a peripheral static programme with Humphrey automated perimetry. Methods. Prospective cross-section study comparing Humphrey full field (FF) 120 two zone programme to a screening protocol for SKP on Octopus perimetry. Results were independently graded for presence/absence of field defect plus type and location of defect. Results. 64 patients (113 eyes) underwent dual perimetry assessment. Mean duration of assessment for SKP was 4.54 minutes ±0.18 and 6.17 ± 0.12 for FF120 (P = 0.0001). 80% of results were correctly matched for normal or abnormal visual fields using the I4e target versus FF120, and 73.5% were correctly matched using the I2e target versus FF120. When comparing Octopus results with combined I4e and I2e isopters to the FF120 result, a match for normal or abnormal fields was recorded in 87%. Conclusions. Humphrey perimetry test duration was generally longer than Octopus SKP. In the absence of kinetic perimetry, peripheral static suprathreshold programme options such as FF120 may be useful for detection of visual field defects. However, statokinetic dissociation may occur. Octopus SKP utilising both I4e and I2e targets provides detailed information of both the defect depth and size and may provide a more representative view of the actual visual field defect.

Highlights

  • Visual field assessment is a valuable test in the neuroophthalmology clinic for determining presence of visual field deficit, aiding localisation of pathological lesion, and for recording improvement, stabilization, or deterioration of the underlying condition

  • Inclusion criteria were adult patients aged 18 years or older attending for visual field assessment, sufficient motor ability to sit at the perimeter unaided, able to press the response button, sufficient cognitive ability to understand and follow instructions for performing the test, willingness to undertake testing on both perimeters on the same day, and able to respond to both I4e and I2e target stimuli on Octopus perimetry

  • This study demonstrates that the combined Octopus I4e and I2e targets were more sensitive to detection of visual field loss than either target alone

Read more

Summary

Introduction

Visual field assessment is a valuable test in the neuroophthalmology clinic for determining presence of visual field deficit, aiding localisation of pathological lesion, and for recording improvement, stabilization, or deterioration of the underlying condition Both kinetic and static perimetry options are frequently used in neuro-ophthalmology clinics. Static perimetry is often undertaken with the Humphrey automated perimeter (Humphrey Instruments, Dublin, CA), whilst kinetic perimetry has most commonly been undertaken using the Goldmann manual perimeter (Haag Streit, Switzerland). Both options, when directly compared, have been shown to reliably detect visual field loss [1,2,3,4,5,6]. Semiautomated kinetic perimetry (SKP) has been further developed in recent years, most notably with the Octopus 900 perimeter (Haag Streit, Switzerland)

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call