Abstract

BackgroundThe prediction of overall survival in tongue cancer is important for planning of personalized care and patient counselling. ObjectivesThis study compares the performance of a nomogram with a machine learning model to predict overall survival in tongue cancer. The nomogram and machine learning model were built using a large data set from the Surveillance, Epidemiology, and End Results (SEER) program database. The comparison is necessary to provide the clinicians with a comprehensive, practical, and most accurate assistive system to predict overall survival of this patient population. MethodsThe data set used included the records of 7596 tongue cancer patients. The considered machine learning algorithms were logistic regression, support vector machine, Bayes point machine, boosted decision tree, decision forest, and decision jungle. These algorithms were mainly evaluated in terms of the areas under the receiver-operating characteristic (ROC) curve (AUC) and accuracy values. The performance of the algorithm that produced the best result was compared with a nomogram to predict overall survival in tongue cancer patients. ResultsThe boosted decision-tree algorithm outperformed other algorithms. When compared with a nomogram using external validation data, the boosted decision tree produced an accuracy of 88.7% while the nomogram showed an accuracy of 60.4%. In addition, it was found that age of patient, T stage, radiotherapy, and the surgical resection were the most prominent features with significant influence on the machine learning model’s performance to predict overall survival. ConclusionThe machine learning model provides more personalized and reliable prognostic information of tongue cancer than the nomogram. However, the level of transparency offered by the nomogram in estimating patients’ outcomes seems more confident and strengthened the principle of shared decision making between the patient and clinician. Therefore, a combination of a nomogram – machine learning (NomoML) predictive model may help to improve care, provides information to patients, and facilitates the clinicians in making tongue cancer management-related decisions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.