Abstract
Exercise training is employed as supplementary therapeutic intervention for heart failure, due to its ability to induce physiological cardiac hypertrophy. In parallel, supplementation with Nigella sativa (N. sativa) was found to enhance myocardial function and induce cardiac hypertrophy. In this study, we aim to compare the morphological and electrophysiological changes associated with these patterns of cardiac hypertrophy and the possible changes upon administration of N. sativa to exercise-trained animals. Fifty-six adult Wistar rats were divided into: control, Nigella-treated (N), exercise-trained (E), and Nigella-treated-exercise-trained (NE) rats. Daily 800mg/kg N. sativa was administered orally to N and NE. E and NE ran on treadmill, 2h/day. At the end of 8weeks ECG, body weight (BW), heart weight (HW), and left ventricular weight (LVW) were recorded. Hematoxylin and Eosin and periodic acid-Schiff sections were prepared to study the histology of left ventricles and to measure diameter of cardiomyocytes (Cdia). HW/BW, LVW/BW, and mean Cdia were significantly higher in all experimental animals compared to the controls. Histology showed normal cardiomyocytes with no fibrosis. ECG showed significantly lower heart rates, higher QRS amplitude, and ventricular specific potential in NE group compared to control group. Supplementation of N. sativa demonstrated a synergistic effect with exercise training as Nigella-exercise-induced cardiac hypertrophy had lower heart rate and well-matched electrical activity of the heart to its mass. Therefore, this model of cardiac hypertrophy might be introduced as a new therapeutic strategy for treatment for heart failure with superior advantages to exercise training.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.