Abstract

This study compared the in vivo and in vitro performances of the Lunar MD and Prodigy dual-energy X-ray absorptiometers (DXAs). Ten volunteers and three different spine phantoms were studied to determine the effect of scan mode, tissue depth, and bone density on measures of spine bone area (BA), bone mineral content (BMC), and areal bone mineral density (BMD). These studies demonstrated that the choice of scan mode was most important for the Prodigy and for subjects who were thin, obese, or had low BMD. Increase in tissue depth caused an increase in measured BMC and BMD for the MD but had a small effect on Prodigy results if the appropriate scan mode was selected. BA was dependent on the BMD for both DXA systems. Results using a hydroxyapatite phantom demonstrated that after correcting for the calibration of Lunar systems, the BMC measured by the MD and Prodigy was similar to the calculated hydroxyapatite content of the phantom. In vivo studies confirmed the in vitro findings and demonstrated that even when the appropriate scan mode was selected, the BMC, BMD, and T-scores were significantly higher on the Prodigy than MD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call