Abstract

Abstract Naphthalene (NAP) was chosen as a target contaminant due to its increasing environmental concern in this work. Using hydrogen peroxide (H2O2), nano-calcium peroxide (nCP), peroxydisulfate (PDS), and peroxymonosulfate (PMS) as oxidants activated by Fe(II)-citric acid (CA) in aqueous solution, 92.8, 95.0, 97.5, and 99.9% of NAP were removed, respectively, in which CA could significantly enhance NAP degradation. HO• was demonstrated to be the major radical responsible for NAP removal in H2O2/Fe(II)/CA and nCP/Fe(II)/CA processes; both HO• and SO4•− were major radicals in PDS/Fe(II)/CA process, whereas SO4•− was the sole dominant radical in PMS/Fe(II)/CA process. The impacts of water matrices (anions, natural organic matters, and surfactants) and initial solution pH on NAP removal as well as the practicalities of these four systems in groundwater were explored. The efficient NAP degradation of nCP/Fe(II)/CA and PMS/Fe(II)/CA processes in the actual groundwater indicated that these two systems have great potential and advantages in the remediation of NAP-contaminated groundwater.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call