Abstract

Using the giant patch technique, we combined two fast relaxation methods on excised patches from guinea pig cardiomyocytes to compare the rate constants of the involved reaction steps. Experiments were done in the absence of intra- or extracellular K+. Fast ATP concentration jumps were generated by photolysis of caged ATP at pH 6.3 with laser flash irradiation at a wavelength of 308 nm and 10 ns duration, as described previously. Transient outward currents with a fast rising phase, followed by a slower decay and a small stationary current, were obtained. Voltage pulses were applied to the same patch in the presence or absence of intracellular ATP. Subtraction of the voltage jump-induced currents in the absence of ATP from those taken in the presence of ATP yielded monoexponential transient current signals, which were dependent on external Na+ but did not differ between intracellular pH (pHi) values 6.3 or 7.4. Rate constants showed a characteristic voltage dependence, i.e., saturating at positive potentials (approximately 200 s-1, 24 degrees C) and exponentially rising with increasing negative potentials. Rate constants of the fast component from transient currents obtained after an ATP concentration jump agree well with rate constants from currents obtained after a voltage jump to zero or positive potentials (pHi 6.3), and the two exhibit the same activation energy of approximately 80 kJ.mol-1. For a given membrane patch, the amount of charge that is moved across the plasma membrane is roughly the same for each of the two relaxation techniques.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.