Abstract

With the advanced developments and automation of the welding process, the use of process optimisation techniques has increased. The objective of the present paper is to describe process optimisation techniques for the gas metal arc (GMA) welding process, based on experimental results generated by the process. Back propagation (BP) neural network and multiple regression methods are employed to study relationships between process parameters and top bead height for robotic multipass welding process, and to select a suitable model that provides the weld final configuration and properties as output and employs the process parameters as input. The process parameters, namely pass number, arc current, welding voltage and welding speed are optimised to produce the required top bead height. These techniques have achieved good agreement with the experimental data and yielded satisfactory results. Also, the BP neural network that was developed was compared to the empirical equations for predicting top bead height through additional experiments, and it was evident that the BP neural network was considerably more accurate than multiple regression techniques.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.