Abstract
Boreal forests in the northern hemisphere provide important sinks for storing carbon dioxide (CO2). However, the size and distribution of these sinks remain uncertain. In particular, many remote-sensing models show a strong bias in the simulation of carbon fluxes for evergreen needleleaf forest. The objective of this study is to improve these predictive models for accurately quantifying temporal changes in the net ecosystem exchange (NEE) of conifer-dominated forest solely based on satellite remote sensing, including the Moderate Resolution Imaging Spectroradiometer (MODIS) Terra daytime land-surface temperature (LST), night-time LST′, enhanced vegetation index (EVI), land–surface water index (LSWI), fraction of absorbed photosynthetically active radiation (FPAR), and leaf area index (LAI). Considering that the component fluxes, gross primary production (GPP), and ecosystem respiration (Re), are strongly influenced by vegetation phenology, seasonality information was extracted from time-series MODIS EVI data based on non-linear least-squares fits of asymmetric Gaussian model functions with a software package for analysing the time-series of satellite sensor data (TIMESAT). The results indicated that models directly incorporating phenological information failed to improve their performance for temperate deciduous forest. Instead, three methods to retrieve the component fluxes – GPP and Re – including direct estimates, models incorporating the phenological information, and models developed based on the threshold value (LST 273 K), were explored respectively. All methods improved NEE estimates markedly and models developed based on the threshold value performed best, and provided a future framework for accurate remote sensing of NEE in evergreen forest.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have