Abstract

In this study, the long-term leaching behaviors of Cd, Cr, Cu, Ni, Pb, and Zn in municipal solid waste incineration (MSWI) fly ash samples from grate-type (GT) and circulating fluidized bed (CFB) incinerators were investigated and compared under the simulated landfill leachate corrosion scenario, which was determined to be more severe than the acid rain corrosion scenario. The total heavy metal contents showed increasing hierarchies of Ni<Cr<Cd<Cu<Pb<Zn in the GT fly ash samples and Cd<Ni<Cr<Pb<Cu<Zn in the CFB fly ash samples. During the leaching processes, all heavy metals followed the two-stage leaching mode, including quick accumulation in stage 1 and then stable release in stage 2. The heavy metals with the highest accumulative leaching amounts were Cd, Pb, and Zn in GT fly ash and Cr, Cu, and Ni in CFB fly ash. In the landfill leachate corrosion scenario, Cd and Cr showed cationic patterns while Pb, Zn, and Cu showed amphoteric patterns. The leaching of Cd, Ni, and Cr arose from the dissolution of the salts they formed (solubility control), while the leaching of Cu, Pb, and Zn was controlled by the Ca-bearing compounds (sorption and precipitation control). A large difference in Pb leaching was observed: the cumulative leaching amount of GT fly ash (707.59-3072.36 mg/kg) was an order of magnitude higher than that of CFB fly ash (22.47-407.314 mg/kg), as a result of the higher primary content and larger proportion of the residual fraction in CFB fly ash. The acid-soluble and reducible fractions exhibited higher percentages than those of other fractions representing higher levels of environmental toxicity and risk. Therefore, more emphasis should be placed on the conversion of bioavailable fractions into stable fractions for the stabilization and utilization of MSWI fly ash.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.