Abstract

<div>Model predictive control (MPC) plays a crucial role in advancing intelligent vehicle technologies. Controllers designed based on various vehicle reference models, including kinematic and dynamic models (both linear and nonlinear), often demonstrate significant differences in control performance. This study contributes by comparing three different MPC control methods and proposing a comprehensive evaluation criterion that considers tracking accuracy, stability, and computational efficiency across various MPC designs. Joint simulations using CarSim and MATLAB/Simulink reveal distinct performance characteristics among the MPC variants. Specifically, kinematic MPC (KMPC) exhibits superior performance at low speeds, linear model predictive control (LMPC) performs best at moderate speeds, and nonlinear MPC (NMPC) achieves optimal performance at high speeds. These findings highlight the adaptive nature of MPC strategies to varying vehicle dynamics and operational conditions, emphasizing the importance of selecting the appropriate MPC design based on the speed regime for maximizing control effectiveness in intelligent vehicles.</div>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.