Abstract
The effect of microwave and mechanochemical ball milling energy inputs was studied for the peroxidative oxidation (with aqueous H2O2) of cyclohexane to cyclohexanol and cyclohexanone, over CoCl2 and/or V2O5 dispersed (μm scale) catalysts. A maximum total yield of cyclohexanol and cyclohexanone of 43% after 1 h of reaction at 30 °C, in acetonitrile and under microwave irradiation (5 W), was achieved over the CoCl2-V2O5 (3 : 1) catalyst prepared by ball milling. Cyclohexanol is the main final product with a selectivity of up to 93% over cyclohexanone. Conducting the oxidation reaction under microwave irradiation under the same conditions but without any mechanochemical treatment of the catalyst prior to use resulted in a lower total yield of 30% with a lower selectivity (69%) towards cyclohexanol over cyclohexanone. The sole application of mechanochemical treatment for the catalyst preparation and the catalytic oxidation of cyclohexane allowed to reach yields of 29% after 1 h of reaction, at room temperature, without microwave irradiation and any additive and in the absence of any organic solvent. Ball milling is shown to provide a convenient, solvent-free method to disperse these solid catalysts and to promote the above cyclohexane oxidation, although, in the latter case, not so effectively as microwave irradiation.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have