Abstract

The objectives of this study were to compare the energy values of poultry byproduct meal (PBM) as feed for adult beagle dogs using the direct, difference, and regression methods to examine dogs' nitrogen metabolism, energy utilization, gaseous metabolism, and body health. Five groups of six 12 mo old female beagles with an average body weight of 9.67 ± 0.52 kg were tested in a 5 × 6 incomplete Latin square design, with six repetitions in each group. Five experimental diets were tested consisting of 100% PBM; three substitution diets containing either 15%, 30%, or 45% PBM (termed 15PBM, 30PBM, and 45PBM, respectively); and a basal diet (included 6.90% PBM). Each experimental period lasted for 10 d, comprising 4 d of dietary acclimation followed by 6 d of testing (including 3 d feeding period and 3 d fasting period), during which the heat production (HP) was determined and feces and urine were collected. Results showed that, in the feeding state, the nitrogen intake, urinary nitrogen, apparent nitrogen digestibility, retained nitrogen, andHP increased significantly (P < 0.05) as the PBM level increased. The net protein utilization, biological value of protein, and total apparent digestibility of amino acids did not differ between the 30PBM and 45PBM diets (P > 0.05). The O2 consumption and CO2 production of beagles during the fasting period were not influenced by the PBM level (P > 0.05). The digestible energy and metabolizable energy values of the PBM estimated by the regression method were 20.16 and 18.18 MJ/kg dry matter (DM), respectively, and did not differ from those determined by the direct method (P > 0.05). The fecal DM percentages and fecal PBM scores were significantly higher in the PBM diet than in the difference method groups (P < 0.05). The direct method group had a significantly higher fecal score (4.63) than the other groups (P < 0.05), The fecal score of the 45PBM diet (3.50) was significantly higher than the 30PBM diet (2.90; P < 0.05). In summary, the direct and difference methods of determining the effective energy value of PBM for beagles, produce significantly different results. Under the conditions of this test, the best proportion of PBM in beagle feed for optimum energy provision is 30%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call