Abstract
BackgroundPlasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers. The discovery of blood-based biomarkers associated with ELVs requires methods that isolate high yields of these EVs without significant contamination with highly abundant plasma proteins and lipoproteins. The rising interest in blood-based EV-associated biomarkers has led to the rapid development of novel EV isolation methods. However, the field suffers from a lack of standardization and often, new techniques are used without critical evaluation. Size exclusion chromatography (SEC) has become the method of choice for rapid isolation of relatively pure EVs from plasma, yet it has technical limitations for certain downstream applications. The recently released exoEasy kit (Qiagen) is a new membrane affinity spin column method for the isolation of highly pure EVs from biofluids with the potential to overcome most of the limitations of SEC.MethodsBy using multiple complementary techniques we assessed the performance of the exoEasy kit in isolating ELVs from 2 ml of human plasma and compared it with the SEC qEV column (Izon Science).ResultsOur data show that exoEasy kit isolates a heterogenous mixture of particles with a larger median diameter, broader size range and a higher yield than the SEC qEV column. The exclusive presence of small RNAs in the particles and the total RNA yield were comparable to the SEC qEV column. Despite being less prone to low density lipoprotein contamination than the SEC qEV column, the overall purity of exoEasy kit EV preparations was suboptimal. The low particle-protein ratio, significant amount of albumin, very low levels of exosome-associated proteins and propensity to triglyceride-rich lipoprotein contamination suggest isolation of mainly non-ELVs and co-isolation of plasma proteins and certain lipoproteins by the exoEasy kit.ConclusionsWe demonstrate that performance of exoEasy kit for the isolation of ELVs for biomarker discovery is inferior to the SEC qEV column. This comprehensive evaluation of a novel EV isolation method contributes to the acceleration of the discovery of EV-associated biomarkers and the development of EV-based diagnostics.
Highlights
Plasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers
Apart from ELVs that can range in size from 30 to 150 nm, we observed smaller plasma lipoprotein particles [low density lipoproteins (LDL)] with a diameter of around 25 nm that were not efficiently removed by the qEV column
In stark contrast to EVs prepared by the Size exclusion chromatography (SEC) qEV column, we noted a substantial presence of proteins
Summary
Plasma extracellular vesicles (EVs), especially exosome-like vesicles (ELVs), are being increasingly explored as a source of potential noninvasive disease biomarkers. The discovery of blood-based biomarkers associated with ELVs requires methods that isolate high yields of these EVs without significant contamination with highly abundant plasma proteins and lipoproteins. The rising interest in blood-based EV-associated biomarkers has led to the rapid development of novel EV isolation methods. Size exclusion chromatography (SEC) has become the method of choice for rapid isolation of relatively pure EVs from plasma, yet it has technical limitations for certain downstream applications. The identification of extracellular vesicle (EV)-associated biomarkers is crucially dependent on methods that allow the isolation of EVs without contaminating plasma proteins and lipoproteins, yield a sufficient quantity of EVs for downstream molecular analysis, and are reproducible, efficient and easy to perform. The growing interest in blood-based EV-associated biomarkers in recent years has led to the development of novel EV isolation methods that could be well suited for clinical research. Despite the growing number of these methods, the field suffers from a lack of standardization and often, new techniques are used without detailed comparative analysis
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.