Abstract

This research is to identify the difference in melt flow and mechanical properties in hybrid composites between kenaf and rice husk that each of the filler was compounded with composite material of calcium carbonate (CaCO3) and high density polyethylene (HDPE) in different loading amount. Different filler loading up to 30 parts of kenaf fibers and rice husk particulate were mixed with the fixed 30% amount of CaCO3. Compounded hybrid composite were prepared and tested for melt flow index, tensile and impact strength. Addition of both fillers had decreased melt flow index (MFI). MFI of rice husk/CaCO3 was higher than kenaf/CaCO3 in HDPE composites. Tensile strength, elongation at break and impact properties of both hybrid composites had decreased with increasing filler content. Tensile strength of kenaf/CaCO3 was higher than rice husk/CaCO3 due to intrinsic fiber structure of kenaf which has some reinforcing effect compared to rice husk. While, impact strength of rice husk/CaCO3 was improved with addition of filler but drastically decrease as the rice husk content were increased up to 30% due to high silica content in rice husk. The Youngs Modulus was increased with addition of natural fibers in CaCO3/HDPE composite.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call