Abstract

This paper presents an examination of the low-frequency engine noise of a turbofan engine with an internal lobed mixer nozzle, and identifies the contributions of the combustion and exhaust jet component noise sources within the low frequency portion of the spectrum by applying recently developed modeling techniques. This investigation was performed as part of the NASA Quiet Aircraft Technology Program. Because the mixer reduces the total jet noise, the combustion noise source becomes a significant contributor. In addition, the character of the jet noise for the mixer nozzle is different from that for a single-stream or coannular nozzle. Although the internal mixer reduces the low-frequency shear-induced jet noise, it also produces an additional higher frequency contribution to the jet noise due to enhanced turbulence levels produced by the mixing process. Therefore, the modeling techniques that predict the low-frequency component source noise must capture sufficient physics of the noise generation process for the combustor and mixer nozzle to accurately represent the component spectral distributions. The improved modeling of component source noise for both combustor and jet sources was addressed as part of the NASA Quiet Aircraft Technology Program. This activity included development of a new narrowband combustion noise model, as well as the application of a recent jet noise model for nozzles with internal forced mixers. The noise data used in this study was taken during the NASA Engine Validation of Noise Reduction Concepts (EVNRC) Program. Both static and flight noise measurements were made at a range of power settings using the Honeywell TFE731-60 turbofan engine. The engine configuration of interest for this study employed a nozzle with an internal lobed mixer. Comparison of static and flight data with predictions from the combustion and jet noise models indicates that combustor noise has a significant contribution to lower-frequency engine noise (in the 400–1000 Hz range), particularly for flight conditions, where the jet noise is reduced due to flight effects, and also for lower power settings at static conditions. However, further calibration of the combustion and jet noise prediction techniques will be required, with isolated component noise data, before these models may be applied with certainty to model total engine noise in the low-frequency range.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call