Abstract

BackgroundEarly identification of pregnant women at high risk of developing gestational diabetes (GDM) is desirable as effective lifestyle interventions are available to prevent GDM and to reduce associated adverse outcomes. Personalised probability of developing GDM during pregnancy can be determined using a risk prediction model. These models extend from traditional statistics to machine learning methods; however, accuracy remains sub-optimal. ObjectiveWe aimed to compare multiple machine learning algorithms to develop GDM risk prediction models, then to determine the optimal model for predicting GDM. MethodsA supervised machine learning predictive analysis was performed on data from routine antenatal care at a large health service network from January 2016 to June 2021. Predictor set 1 were sourced from the existing, internationally validated Monash GDM model: GDM history, body mass index, ethnicity, age, family history of diabetes, and past poor obstetric history. New models with different predictors were developed, considering statistical principles with inclusion of more robust continuous and derivative variables. A randomly selected 80% dataset was used for model development, with 20% for validation. Performance measures, including calibration and discrimination metrics, were assessed. Decision curve analysis was performed. ResultsUpon internal validation, the machine learning and logistic regression model’s area under the curve (AUC) ranged from 71% to 93% across the different algorithms, with the best being the CatBoost Classifier (CBC). Based on the default cut-off point of 0.32, the performance of CBC on predictor set 4 was: Accuracy (85%), Precision (90%), Recall (78%), F1-score (84%), Sensitivity (81%), Specificity (90%), positive predictive value (92%), negative predictive value (78%), and Brier Score (0.39). ConclusionsIn this study, machine learning approaches achieved the best predictive performance over traditional statistical methods, increasing from 75 to 93%. The CatBoost classifier method achieved the best with the model including continuous variables.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call