Abstract
UV/H2O2 advanced oxidation is an effective barrier against organic micro pollutants. Several studies have focused on the degradation of a wide range of pollutants, but regarding the comparison of low-pressure mercury lamps (LP) with medium-pressure mercury lamps (MP) with respect to energy consumption by the UV/H2O2 process, little is known so far. Although the absorbance of H2O2 at 254 nm is low, the results of this research show that the yield of hydroxyl radical formation (OHCT) with LP lamps is comparable or higher than with MP lamps. In a water matrix with a background absorbance due to organics and nitrate, H2O2 absorbs UV light very effectively at 254 nm. Generally, due to the contribution of direct photolysis, the degradation of pollutants is better with MP-UV/H2O2 than with LP-UV/H2O2 at the same UV fluence. Therefore, with LP-UV/H2O2 micro pollutants are predominantly degraded through reaction with OH radicals. However, due to the much higher efficiency of LP lamps in converting electrical energy to UV-C light, the energy required to achieve 90% degradation (EEO) of pesticides and pharmaceuticals can be significantly lower with LP-UV/H2O2 than with MP-UV/H2O2. Results of bench-scale tests show EEO data of the LP-UV/H2O2 process to be 30%–50% lower than for the MP-UV/H2O2 process. At these process conditions MS2 phage inactivation was found to be more than 8 logs for both MP-UV/H2O2 and LP-UV/H2O2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.