Abstract
Management of the parking apron is one of the most essential airport ground service operations for flight operations to run smoothly. Effective airport ground service management will have a direct effect on the cost and duration of flights. Therefore, in this paper, we address the issue of using machine learning techniques, such as logistic regression analysis and artificial neural network (ANNs) models, for classified targets of stand locations assignment of an arriving flight. Also, this could assist ground controllers to assign apron allocation and improve the efficiency and predictability of airport operations which reduce the time required for airport ground processing to increase flight capacity. In order to evaluate the performance of the proposed method, simulation results reveal that ANN has the lowest error rate and the highest accuracy. Therefore, ANN is the effective classification technique for this data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.