Abstract

Geographically distributed ovarian tissue cryobanks remain limited due to the high facility and staff costs, and cold transportation to centers is associated with ischemia-induced tissue damage that increases with transport distance. It is ideal to perform the cryopreservation procedure at a tissue removal site or local hospital before shipment to cost-effective centralized cryobanks. However, conventional liquid nitrogen-based freezers are not portable and require expensive infrastructure. To study the possibility of an ovarian tissue cryopreservation network not dependent on liquid nitrogen, we cryopreserved bovine ovarian tissue using three cooling techniques: a controlled rate freezer using liquid nitrogen, a liquid nitrogen-free controlled rate freezer, and liquid nitrogen-free passive cooling. Upon thawing, we evaluated a panel of viability metrics in frozen and fresh groups to examine the potency of the portable liquid nitrogen-free controlled and uncontrolled rate freezers in preserving the ovarian tissue compared to the non-portable conventional controlled rate freezer. We found similar outcomes for reactive oxygen species (ROS), total antioxidant capacity (TAC), follicular morphology, tissue viability, and fibrosis in the controlled rate freezer groups. However, passive slow cooling was associated with the lowest tissue viability, follicle morphology, and TAC, and the highest tissue fibrosis and ROS levels compared to all other groups. A stronger correlation was found between follicle morphology, ovarian tissue viability, and fibrosis with the TAC/ROS ratio compared to ROS and TAC alone. The current study undergirds the possibility of centralized cryobanks using a controlled rate liquid nitrogen-free freezer to prevent ischemia-induced damage during ovarian tissue shipment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call