Abstract

We report on the physical and optical characterization of liposomes formed by extrusion and sonication, two widely used methods for vesicle preparation. We also address the issue of whether the properties of bilayers formed from liposomes prepared by the two techniques differ at the molecular and mesoscopic levels. We used the phospholipid 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), with and without cholesterol, to form liposomes, incorporating 1-oleoyl-2-[12-[(7-nitro-2-1,3-benzoxadiazol-4-yl)amino]dodecanoyl]-sn-glycero-3-phosphocholine (18:1-12:0 NBD-PC) as an optical probe of dynamics. We measured the physical morphology of liposomes by transmission electron microscopy (TEM) and dynamic light scattering (DLS), and the rotational and translational diffusion of 18:1-12:0 NBD-PC by time correlated single photon counting (TCSPC) and fluorescence recovery after pattern photobleaching (FRAPP), respectively. We find that, despite apparent differences in average size and size distribution, both methods of preparation produced liposomes that exhibit the same molecular scale environment. The translational diffusion behavior of the tethered chromophore in planar bilayer lipid membranes formed from the two types of liposomes also yielded similar results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.