Abstract

Based on a hexagonal lattice which includes deposition, dissociation, and diffusion, we performed a kinetic Monte Carlo model to explore thin film growth via pulsed laser deposition (PLD) and molecular beam epitaxy (MBE) within the submonolayer regime. First and second nearest-neighbor interactions calculated by the Morse potential are taken into account in this case. These simulations show that thin film deposition by PLD is markedly different from that by MBE. With PLD, as pulse duration decreases, the island density increases and the island size decreases. Similarly, at temperature T = 550 K , the scaling function for MBE is rather similar to that of the analytical prediction for a critical island size of i = 2, while the scaling function for PLD changes from an i = 1 behavior to an i = 0 behavior with the decrease in pulse duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call