Abstract

The nuclear industry has growing interest in replacing forgings with structural components fabricated by powder metallurgy with hot isostatic pressing (PM-HIP), owing to their chemical homogeneity, uniform grain structure, and near-net shape production. This study compares the ion irradiation response of PM-HIP and forged Alloy 625, over 50 and 100 dpa, 400 °C and 500 °C. Microstructure is characterized using down-zone bright-field scanning transmission electron microscopy (DZBFSTEM), and hardening is characterized using nanoindentation. PM-HIP Alloy 625 has a lower initial dislocation line density, resulting in a more rapid onset of dislocation loop growth and unfaulting than the forged material. But the total defect population (i.e. loop line length plus dislocation density) is insensitive to fabrication method. This finding shows promise for the eventual qualification of PM-HIP alloys for nuclear applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call