Abstract

Both in-situ and ex-situ electrolytic H2 supply have been used for biomethane production from CO2. However, the pros and cons of them have not been systematically compared. The present study makes this comparison using a 20 L continuous stirred-tank reactor equipped with external and internal electrolyzers. Compared to the ex-situ H2 supply, the in-situ electrolytic H2 bubbles were one order of magnitude smaller, which resulted in improved H2 mass transfer and biomass growth. Consequently, the methane production rate and the coulombic efficiency of the in-situ H2 supply (0.51 L·L-1·d-1, 96%) were higher than those of the ex-situ H2 supply (0.30 L·L-1·d-1, 56%). However, due to high internal resistance, the energy consumption for the in-situ electrolysis was 2.54 times higher than the ex-situ electrolysis. Therefore, the in-situ electrolytic H2 supply appears to be more promising, but reducing energy consumption is the key to the success of this technology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.