Abstract

Large repositories of in vitro bioactivity data such as US EPA's Toxicity Forecaster (ToxCast) provide a wealth of publicly accessible toxicity information for thousands of chemicals. These data can be used to calculate point-of-departure (POD) estimates via concentration-response modeling that may serve as lower bound, protective estimates of in vivo effects. However, the data are predominantly based on mammalian models and discussions to date about their utility have largely focused on potential integration into human hazard assessment, rather than application to ecological risk assessment. The goal of the present study was to compare PODs based on (1) quantitative structure-activity relationships (QSARs), (2) the 5th centile of the activity concentration at cutoff (ACC), and (3) lower-bound cytotoxic burst (LCB) from ToxCast, with the distribution of in vivo PODs compiled in the Ecotoxicology Knowledgebase (ECOTOX). While overall correlation between ToxCast ACC5 and ECOTOX PODs for 649 chemicals was weak, there were significant associations among PODs based on LCB and ECOTOX, LCB and QSARs, and ECOTOX and QSARs. Certain classes of compounds showed moderate correlation across datasets (eg, antimicrobials/disinfectants), while others, such as organophosphate insecticides, did not. Unsurprisingly, more precise classifications of the data based on ECOTOX effect and endpoint type (eg, apical vs biochemical; acute vs chronic) had a significant effect on overall relationships. Results of this research help to define appropriate roles for data from new approach methodologies in chemical prioritization and screening of ecological hazards.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call