Abstract

In this paper, two approaches are proposed and compared for the detection and identification of aircraft subsystem failures based on the artificial immune system paradigm combined with the hierarchical multiself strategy. The first approach relies on the heuristic ranking of lower order self/non-self projections and the generation of selective immunity identifiers through structuring of the non-self. The second approach is based on an information processing algorithm inspired by the functionality of the dendritic cells. The artificial dendritic cell is defined as a computational unit that centralizes, fuses, and interprets information from the multiple selves to produce a unique detection and identification outcome. A hierarchical multi-self strategy is used with both approaches considering 2-dimensional self/non-self projections or subselves. A mathematical formulation of the concepts and detailed implementation algorithms are presented. The proposed methodologies are demonstrated and compared using simulation data for a supersonic fighter from a motion-based flight simulator at nominal conditions, under failures of actuators, malfunction of sensors, and wing damage. In all cases considered, both detection and identification schemes achieve excellent detection and identification rates with practically no false alarms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.