Abstract

This paper presents the development and application of an integrated artificial immune system-based scheme for the detection and identification of a wide variety of aircraft sensor, actuator, propulsion, and structural failures/damages. The proposed approach is based on a hierarchical multi-self strategy where different self configurations are selected for the identification of specific abnormal conditions. Data collected using a motion-based flight simulator was used to define the self for a sub-region of the flight envelope. The aircraft model represents a supersonic fighter, including model-following adaptive control laws based on non-linear dynamic inversion and artificial neural network augmentation. The proposed detection scheme achieves low false alarm rates and high detection and identification rates for the four categories of failures considered.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.