Abstract

Efficient harvest and recovery of high-purity monoclonal antibodies was achieved using hydrophobic charge induction chromatography (HCIC). Both simple and complex feedstocks were studied, including protein-free cell culture supernatant and the clarified/concentrated milk of transgenic goats. Viral clearance studies demonstrated a 4-log reduction of MVM virus (minute virus of mice), along with substantial reduction of DNA content. Sorbent characterization studies confirmed that HCIC is based on the pH-dependent behavior of a dual-mode, ionizable ligand. Binding, based on hydrophobic interaction, was achieved under near-physiological conditions, and in the absence of lyotropic salt. Desorption was accomplished under mild conditions — pH 4.0. At this pH, both ligand and antibody carry a net positive charge, and desorption occurs on the basis of electrostatic charge repulsion. pH-based control of chromatographic function was demonstrated. Chromatography on this antibody-selective HCIC sorbent was evaluated as a cost-effective, process-compatible alternative to affinity chromatography protein A sorbents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.