Abstract
During previous Joint European Torus (JET) deuterium-to-tritium change-over experiments, subdivertor tritium concentrations were compared with those measured at the strike point region and found to differ significantly during the first few discharges, which was correlated with wall saturation. New deuterium-to-hydrogen fueling experiments in JET have been made and are compared to these previous experiments. Rates of hydrogenic species exchange are similar to those found in previous tritium experiments, granting differences in divertor configuration and mass ratio. In the new experiments, measurements of the CD and CH molecular band intensities near the divertor strike point monitor an intermediate stage of particle exchange between the plasma and wall. The CD/CH ratio correlates well with both the plasma and subdivertor concentration. The neutral transport code EIRENE and the wall hydrogen trapping and diffusion code WDIFFUSE have been used to evaluate the wall saturation. It appears that chemically-related processes play a role in mediating the plasma–wall exchange.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.