Abstract

Results of three hybrid receptor models, potential source contribution function (PSCF), concentration weighted trajectory (CWT), and residence time weighted concentration (RTWC), were compared for locating polychlorinated biphenyl (PCB) sources contributing to the atmospheric concentrations in Chicago. Variations of these models, including PSCF using mean and 75% criterion concentrations, joint probability PSCF (JP-PSCF), changes of point filters and grid cell sizes for RTWC, and PSCF using wind trajectories started at different altitudes, are also discussed. Modeling results were relatively consistent between models. However, no single model provided as complete information as was obtained by using all of them. CWT and 75% PSCF appears to be able to distinguish between larger sources and moderate ones. RTWC resolved high potential source areas. RTWC and JP-PSCF pooling data from all sampling sites removed the trailing effect often seen in PSCF modeling. PSCF results using average concentration criteria, appears to identify both moderate and major sources. Each model has advantages and disadvantages. However, used in combination, they provide information that is not available if only one of them is used. For short-range atmospheric transport, PSCF results were consistent when using wind trajectories starting at different heights. Based on the archived PCB data, the modeling results indicate there is a large potential source area between Joliet and Kankakee, IL, and two moderate sources to the northwest and south of Chicago. On the south side of Chicago in the neighborhood of Lake Calumet, several PCB sources were identified. Other unidentified potential source location(s) will require additional upwind/downwind field sampling to verify modeling results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.