Abstract
The Total Electron Content (TEC) is the ionospheric parameter that has the main effect on radio wave propagation. Therefore, it is crucial to evaluate the performance of the TEC models for the further improvement of the ionospheric modelling in equatorial regions. This work presents an analysis of the TEC, derived from the GPS Ionospheric Scintillation and TEC Monitor (GISTM) receiver at the Langkawi station, Malaysia, located at the geographic coordinates of 6.19°N, 99.51°E and the geomagnetic coordinates of 3.39°S, 172.42°E. The diurnal, monthly and seasonal variations in 2014 of the observed GPS–TEC were compared with the statistical Holt-Winter method and a recent version of the International Reference Ionosphere model (IRI-2012), using three different topside options of an electron density, which are the IRI-2001, IRI01-corr and NeQuick. The maximum peaks of the GPS–TEC were observed in the post-noon time and the minimum was observed during the early morning time. In addition, in monthly variations the Holt-Winter and the IRI-2012 topside options showed an underestimation that was in agreement with the GPS–TEC, except for the IRI-2001 model which showed an overestimation in June, July and August. Regarding the seasonal variation of the GPS–TEC, the lowest values were observed during summer and it reached its maximum value during the equinox season. The IRI-2001 showed the highest value of percentage deviation compared to the IRI01-corr, NeQuick and Holt-Winter method. Therefore, the accuracy of the models was found to be approximately 95% in the Holt-Winter method, 75% in the IRI01-corr, 73% in the NeQuick and 66% in the IRI-2001 model. Hence, it can be inferred that the Holt-Winter method showed a higher performance and better estimates of the TEC compared to the IRI01-corr and NeQuick, while the IRI-2001 showed a poor predictive performance in the equatorial region over Malaysia.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have