Abstract

Biosynthesis of gold nanoparticles (AuNPs) by microbes has received much attention as an efficient and eco-friendly process. However, the characteristics of AuNPs biosynthesized by different microbial cell-free extracts are rarely comparatively studied. In this study, three locally isolated strains, i.e., bacteria Labrys sp. WJW, yeast Trichosporon montevideense WIN, and filamentous fungus Aspergillus sp. WL-Au, were selected for AuNPs biosynthesis. UV-Vis absorption bands at 538, 539, and 543nm confirmed the formation of AuNPs by these strains. Transmission electron microscopy and selected area electron diffraction analyses revealed that the as-synthesized AuNPs were crystalline with spherical or pseudo-spherical shapes. However, the average sizes of these AuNPs were diverse, which were 18.8, 22.2 and 9.5nm, respectively. The biomolecules involved in nanoparticles stabilization were demonstrated by Fourier transform infrared spectroscopy analysis. Four common functional groups such as -N-H, -C=C, -N=O, and -S=O groups were detected in these AuNPs, while a distinct -C=O group was involved in WL-Au-AuNPs. The catalytic rate of WL-Au-AuNPs toward 4-nitrophenol reduction (0.37min-1) was much higher than those of others (WJW-AuNPs 0.27min-1 and WIN-AuNPs 0.23min-1). This research would provide useful information for exploring efficient microbial candidates to synthesize AuNPs with excellent performances.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.