Abstract

AbstractThree methods, Shuffled Complex Evolution (SCE), Simple Genetic Algorithm (SGA) and Micro‐Genetic Algorithm (µGA), are applied in parameter calibration of a grid‐based distributed rainfall–runoff model (GBDM) and compared by their performances. Ten and four historical storm events in the Yan‐Shui Creek catchment, Taiwan, provide the database for model calibration and verification, respectively. The study reveals that the SCE, SGA and µGA have close calibration results, and none of them are superior with respect to all the performance measures, i.e. the errors of time to peak, peak discharge and the total runoff volume, etc. The performances of the GBDM for the verification events are slightly worse than those in the calibration events, but still quite satisfactory. Among the three methods, the SCE seems to be more robust than the other two approaches because of the smallest influence of different initial random number seeds on calibrated model parameters, and has the best performance of verification with a relatively small number of calibration events. Copyright © 2009 John Wiley & Sons, Ltd.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.