Abstract
An automatic calibration methodology for the Xinanjiang model that has been successfully and widely applied in China is presented. The automatic calibration of the model consists of two parts: water balance parameter and runoff routing parameter calibration. The former is based on a simple genetic algorithm (GA). The latter is based on a new method which combines a fuzzy optimal model (FOM) with a GA for solving the multiple objective runoff routing parameters calibration problem. Except for the specific fitness where the membership degree of alternative obtained by FOM with limited alternatives and multi-objectives is employed, the GA with multiple objectives in this paper is otherwise the same as the simple GA. The parameter calibration includes optimization of multiple objectives: (1) peak discharge, (2) peak time and (3) total runoff volume. Thirty-four historical floods from 12 years in the Shuangpai Reservoir are applied to calibrate the model parameters whilst 11 floods in recent 2 years are utilized to verify these parameters. Results of this study and application show that the hybrid methodology of GAs and the FOM is not only capable of exploiting more the important characteristics of floods but also efficient and robust.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.