Abstract

Simple SummaryIn the face of a swine health crisis, emerging zoonotic diseases or environmental catastrophe, the mass depopulation of swine may be required to prevent the additional spread of disease and to minimize animal pain or suffering. Due to the increasing risk of global disease outbreaks, the U.S. swine industry needs feasible guidelines in place in preparation for such events. Current American Veterinary Medical Association (AVMA) approved swine depopulation methods can be difficult to implement under field conditions. Emergency depopulation using inhalants such as carbon dioxide (CO2) and nitrogen gas (N2) or the use of aspirated foam agents have been approved and conducted in poultry in the US, but are not approved for use in other livestock. Our findings, using cull sows, demonstrate that although CO2, N2 and aspirated foam combinations successfully killed all the animals, CO2 and aspirated foam did so in the shortest timeframe. In addition, the use of aspirated foam was as effective as CO2 for sow depopulation while having potential operational advantages, such as no use of lethal gases and reduced risk of associated equipment failure.The U.S. swine industry is currently inadequately prepared to counteract the increasing threat of high-consequence diseases. Although approved and preferred depopulation guidelines exist, ventilation shutdown (VSD+) is currently the only method being deployed during a state of emergency to depopulate large swine populations. However, the permitted use of VSD+ during constrained circumstances has been criticized due to raised swine welfare concerns. The objective of this study was to investigate the effectiveness of carbon dioxide gas (CO2), nitrogen gas (N2), compressed air foam (CAF), compressed nitrogen foam (CAF-N2) and aspirated foam (AF) during a 15-min dwell time on adult swine in an emergency depopulation situation. A small-scale trial using 12 sows per depopulation method showed the highest efficiency to induce cessation of movement for AF and CO2 (186.0 ± 48 vs. 202.0 ± 41, s ± SD). The ease of implementation and safety favored AF for further investigation. A large-scale field study using AF to depopulate 134 sows in modified rendering trailers showed a mean fill time of 103.8 s (SD: 5.0 s) and cessation of movement of 128.0 s (SD: 18.6 s) post filling. All sows were confirmed dead post-treatment for both trials. The implementation of AF in modified rendering trailers may allow for a safe and reliable method that allows for the expedient and mobile depopulation of both small and large numbers of sows during an emergency.

Highlights

  • Modern swine production coupled with the increased global movement of people and animals increases the chance of the introduction and spread of pathogens

  • The objective of the current project was to investigate the effectiveness of several depopulation methods, including carbon dioxide gas, nitrogen gas, compressed air foam, compressed nitrogen foam and aspirated foam to facilitate the depopulation of sow herds in the face of an emergency

  • A penetrating captive bolt device was available if a supplemental method of euthanasia was necessary at the time of assessing the consciousness of the sows, post depopulation method completion and when it was safe for operators to enter

Read more

Summary

Introduction

Modern swine production coupled with the increased global movement of people and animals increases the chance of the introduction and spread of pathogens. Parts of Europe [7] and more recently, the Western Hemisphere [8,9], show that pathogens can travel with the global transportation network of feed, replacement animals, pork products and equipment [6]. These findings indicate that an outbreak occurring on the other side of the world can suddenly appear and spread locally or regionally with no or little warning. Recent outbreaks highlight the importance of having readily available contingency plans in place for the U.S swine industry

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.