Abstract

This paper provides a comparative study on the crashworthiness of different functionally-graded thin-wall tubes under multiple loading angles, which include hollow uniform thickness (H-UT), hollow functionally graded thickness (H-FGT), foam-filled uniform thickness (F-UT) and foam-filled functionally graded thickness (F-FGT) configurations. First, finite element analyses of these differently graded circular tubes reveal that the F-FGT tube has the best crashworthiness under multiple loading angles. Second, parametric study on the F-FGT tube indicates that the thickness gradient and variation range significantly influence its crashworthiness. Third, the Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to optimize the F-FGT tube, in which the optimal thickness variation is sought for maximizing specific energy absorption (SEA) and minimizing initial peak force (IPF) under multiple loading angles. The optimized F-FGT tube exhibits better crashworthiness than other three equivalent tube configurations, indicating that the F-FGT tube can be a potential energy absorber when oblique impact loading is inevitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.