Abstract

To obtain porous starch granules with higher absorption capacities, three types of enzyme combinations were adopted to modify wheat and maize starches: (1) sequential α-amylase (AA) → glucoamylase (GA); (2) sequential branching enzyme (BE) → GA; and (3) sequential AA→BE→GA. The results indicated that AA→BE→GA treatment had a most optimal influence on porous starches. Compared to AA→GA and BE→GA, the mesopores in wheat starch granules treated with AA→BE→GA decreased by 52.82 and 48.70%, respectively. Conversely, the macropores increased by 216.68 and 138.18%, respectively. While for maize starch, the percentages of mesopores and macropores hardly changed after three enzyme combinations. Comparing the three enzyme treatments showed that pore volume (0.005 and 0.007 cm3/g) and pore size (36.35 and 26.54 nm) were largest in the AA→BE→GA treated wheat and maize starches, respectively. Compared to the AA→GA and BE→GA, the adsorption capacities for oil, dye and heavy metal ions, wheat starch treated with AA→BE→GA increased by 46.61 and 242.33%, and 44.52 and 134.41%, and 28.83 and 271.72%, respectively. Correspondingly, that of maize starch increased by 29.71 and 133.29%, and 42.92 and 79.93%, and 28.16 and 161.43%, respectively. These results may provide a new and valuable enzyme combination for optimising porous starch granules with higher absorption capacities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.