Abstract

The fin-edge roughness (FER) and the TiN metal grain work function (MGW)-induced variability affecting OFF and ON device characteristics are studied and compared between a 10.4-nm gate length In0.53Ga0.47As FinFET and a 10.7-nm gate length Si FinFET. We have analyzed the impact of variability by assessing five figures of merit (threshold voltage, subthreshold slope, OFF-current, drain-induced-barrier-lowering, and ON-current) using the two state-of-the-art in-house-build 3-D simulation tools based on the finite-element method. Quantum-corrected 3-D drift-diffusion simulations are employed for variability studies in the subthreshold region while, in the ON-region, we use quantum-corrected 3-D ensemble Monte Carlo simulations. The In0.53Ga0.47As FinFET is more resilient to the FER and MGW variability in the subthreshold compared with the Si FinFET due to a stronger quantum carrier confinement present in the In0.53Ga0.47As channel. However, the ON-current variability is between 1.1 and 2.2 times larger for the In0.53Ga0.47As FinFET than for the Si counterpart, respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.