Abstract
High CO2 emissions and energy consumption have greatly restricted the development of China’s iron and steel industry. Two alternative ironmaking processes, top gas recycling-oxygen blast furnace (TGR-OBF) and COREX®, can reduce CO2 emissions and coking coal consumption in the steel industry when compared with a conventional blast furnace (BF). To obtain parameters on the material flow of these processes, two static process models for TGR-OBF and COREX were established. Combining the operating data from the Jingtang steel plant with established static process models, this research presents a detailed analysis of the material flows, metallurgical gas generation and consumption, electricity consumption and generation, comprehensive energy consumption, and CO2 emissions of three integrated steel plants (ISP) equipped with the BF, TGR-OBF, and COREX, respectively. The results indicated that the energy consumption of an ISP with the TGR-OBF was 16% and 16.5% lower than that of a conventional ISP and an ISP with the COREX. Compared with a conventional ISP, the coking coal consumption in an ISP with the TGR-OBF and an ISP with the COREX were reduced by 39.7% and 100% respectively. With the International Energy Agency factor, the ISP with the TGR-OBF had the lowest net CO2 emissions, which were 10.8% and 35.0% lower than that of a conventional ISP and an ISP with the COREX. With the China Grid factor, the conventional ISP had the lowest net CO2 emissions—2.8% and 24.1% lower than that of an ISP with the TGR-OBF and an ISP with the COREX, respectively.
Highlights
Steel is the world’s most popular construction material due to its durability, processability, and cost
Compared with a conventional integrated steel plants (ISP), the coking coal consumption in an ISP with the top gas recycling-oxygen blast furnace (TGR-oxygen blast furnace (OBF)) and an ISP with the COREX were reduced by 39.7% and 100% respectively
The results indicate that the energy consumption of an ISP with the TGR-OBF
Summary
Steel is the world’s most popular construction material due to its durability, processability, and cost. Producing steel creates high energy consumption and CO2 emissions. According to the World Steel Association, the production of crude steel reached 1691 million tons in 2017 and the large amount of crude steel production resulted in about 3.1 × 1011 GJ of energy consumption and 3043.8 million tons of CO2 emissions [1]. Route is the dominant steel production route in the world, and its ironmaking process contributes approximately 70% of the above energy consumption and CO2 emissions [2]. In order to minimize the energy consumption and CO2 emissions of the ironmaking process, alternative liquid iron production technologies to BF such as top gas recycling-oxygen blast furnace (TGR-OBF) and COREX have been proposed and developed
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have