Abstract

Electron density measurements obtained from China Seismo‐Electromagnetic Satellite (CSES) and Swarm-B can play an increasingly important role in the study of ionosphere above F2 peak height. This study presented a comprehensive comparison of electron density products obtained from Langmuir probe mounted on CSES and Swarm-B with ionospheric tomography for a whole year period of 2019. CSES was fully compared with Swarm-B on a global scale, including both absolute and relative differences, and a new index called NFI was developed to better quantify the similarity between two latitudinal profiles of electron density. CSES and Swarm-B were then compared with tomography respectively in four regions, roughly located in America, Europe, Australia and China. Results indicated that CSES data are consistent with Swarm-B, as NFI values exceed 0.6 for most of the analyses. Tomography and Swarm-B were found to have a good agreement as their biases are less than 0.2 × 105 el/cm3 in general. For the comparison between CSES and tomography, the bias increased to around 0.6 × 105 el/cm3 but the standard deviation changed slightly, validating the underestimation of electron density by CSES. The spatiotemporal comparisons of CSES and Swarm-B with tomography showed that: 1) the differences in electron density were relatively low in middle latitudes and increased rapidly in the regions of equatorial ionization anomaly; 2) Swarm-B has a better consistent with tomography than CSES, but both are capable of detecting ionosphere anomalies such as midlatitude arcs; and 3) CSES and Swarm-B both can capture the seasonal changes of electron density, while their values are basically smaller than those from tomography in Spring and Summer months.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call