Abstract

We fabricated two types of double-gate amorphous hafnium-indium-zinc oxide thin-film transistors: a back-channel etch (BCE) type and an etch stopper (ES) type. The normalized on-current and field-effect mobility of the BCE type are larger than those of the ES type. Furthermore, when applied with a positive bias stress, stability trends compared for each single-gate device are different according to structures. We suggest that the reason for the different electrical properties and bias stability originates from the ES structure in which some regions under the source/drain electrodes block the top-gate field; thus, there is no carrier accumulation or charge trapping into the dielectric layer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.