Abstract

AbstractCeramics such as lead zirconate titanate (PZT) tend to dissolve incongruently, and thus pose a challenge in the cold sintering process. Moist lead nitrate has previously been shown to enable a cold sinter‐assisted densification of PZT by a viscous phase sintering mechanism. In this paper, lead acetate trihydrate is demonstrated to lower the required temperature of the cold sintering step to 200°C. This densification process was described as a two‐step process: cold sintering of PZT with lead acetate trihydrate and post‐annealing the as‐cold sintered PZT ceramics. Unlike in the case of lead nitrate, PZT densification with lead acetate trihydrate occurs by a liquid phase assisted sintering mechanism, leading to an as‐cold sintered relative density of 84% at 200°C. After performing a post‐anneal step at 900°C, >97% relative densities were achieved in samples that were cold sintered with lead acetate trihydrate. This step not only densified PZT but also refined the grain boundaries. In the post‐annealed samples, the room‐temperature relative permittivity at 100 Hz was ~1600, slightly higher than that reported in samples that used lead nitrate as a sintering aid; the loss tangent was about 3.8%. For measurements at 10 Hz, the remanent polarization in both cases was ~28 µC/cm2. Both Rayleigh analysis and aging studies showed that a higher irreversible contribution to the permittivity exists in samples that used lead nitrate as a cold sintering aid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call