Abstract

In this article we evaluate methods used to reveal the molecular complexity, which is generated in biological samples by posttranslational modifications (PTM) of proteins. We show how distinct molecular differences on the level of phosphorylation sites in a single protein (ovalbumin) can be resolved with different success using 1D and 2D gel-electrophoresis and reversed-phase liquid chromatography (LC) with monolithic polystyrol-divinylbenzol (PS-DVB) columns for protein separation, and matrix-assisted laser desorption ionisation-time of flight mass spectrometry (MALDI-TOF MS) for protein identification. Phosphorylation site analysis was performed using enzymatic dephosphorylation in combination with differential peptide mass mapping. Liquid chromatography-MALDI-TOF MS coupling with subsequent on-target tryptic protein digestion turned out to be the fastest method tested but yielded low resolution for the analysis of PTM, whereas 2D gel-electrophoresis, due to its unique capability of resolving highly complex isoform pattern, turned out to be the most suitable method for this purpose. The evaluated methods complement one another and in connection with efficient technologies for differential and quantitative analysis, these approaches have the potential to reveal novel molecular details of protein biomarkers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.