Abstract

Pulse wave velocity (PWV), a measurement of arterial stiffness, can be estimated locally by determining the time delay of the pulse waveforms for a known distance as measured in an ultrasound image. Our aim was to compare three ultrasound-based methods for estimation of local PWV based on the measurement of diameter distension waveforms, displacement waveforms of the anterior wall and displacement waveforms of the posterior wall, respectively, in human common carotid arteries in vivo. The local PWVs at both systolic foot (PWVsf) and dicrotic notch (PWVdn) were estimated from ultrasound radiofrequency data of 25 healthy and 24 hypertensive patients for each method. PWV estimation using the distension waveform method was found to have the highest precision in both groups. Both PWVsf and PWVdn were significantly higher in the hypertensive group compared with the healthy group using the distension waveform method (PWVsf: 6.08 ± 1.70 m/s vs. 4.75 ± 0.92 m/s, p = 0.000014; PWVdn: 7.83 ± 2.26 m/s vs. 5.21 ± 0.95 m/s, p < 0.000001), whereas there was no significant difference at a significance level of 0.01 between the two groups when the anterior or posterior wall waveform method was used. Thus, the difference in arterial stiffness between the two groups could be discriminated well by the distension waveform method. The local PWV estimated using distension waveforms might be a promising index for arterial stiffness characterization and hypertension management.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call